Audio Replay Attack Detection Using High-Frequency Features

نویسندگان

  • Marcin Witkowski
  • Stanislaw Kacprzak
  • Piotr Zelasko
  • Konrad Kowalczyk
  • Jakub Galka
چکیده

This paper presents our contribution to the ASVspoof 2017 Challenge. It addresses a replay spoofing attack against a speaker recognition system by detecting that the analysed signal has passed through multiple analogue-to-digital (AD) conversions. Specifically, we show that most of the cues that enable to detect the replay attacks can be found in the high-frequency band of the replayed recordings. The described anti-spoofing countermeasures are based on (1) modelling the subband spectrum and (2) using the proposed features derived from the linear prediction (LP) analysis. The results of the investigated methods show a significant improvement in comparison to the baseline system of the ASVspoof 2017 Challenge. A relative equal error rate (EER) reduction by 70% was achieved for the development set and a reduction by 30% was obtained for the evaluation set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replay Attack Detection Using DNN for Channel Discrimination

Voice is projected to be the next input interface for portable devices. The increased use of audio interfaces can be mainly attributed to the success of speech and speaker recognition technologies. With these advances comes the risk of criminal threats where attackers are reportedly trying to access sensitive information using diverse voice spoofing techniques. Among them, replay attacks pose a...

متن کامل

Audio-Replay Attack Detection Countermeasures

This paper presents the Speech Technology Center (STC) replay attack detection systems proposed for Automatic Speaker Verification Spoofing and Countermeasures Challenge 2017. In this study we focused on comparison of different spoofing detection approaches. These were GMM based methods, high level features extraction with simple classifier and deep learning frameworks. Experiments performed on...

متن کامل

Interference Mitigation of Replay Attacks in GPS Receiver using of Finite Impulse Response Filter

The vulnerability of civil GPS receiver to interference may be intentional or unintentional. Among all types of interference, replay attack intended as the most dangerous intentional one. The signal structure of replay attack is almost the same with the satellite signal. The interference effects can be reduce with the design of an appropriate filter in the receiver. This paper presents two meth...

متن کامل

Ensemble Learning for Countermeasure of Audio Replay Spoofing Attack in ASVspoof2017

To enhance the security and reliability of automatic speaker verification (ASV) systems, ASVspoof 2017 challenge focuses on the detection problem of known and unknown audio replay attacks. We proposed an ensemble learning classifier for CNCB team’s submitted system scores, which across uses a variety of acoustic features and classifiers. An effective postprocessing method is studied to improve ...

متن کامل

Spoof Detection Using Source, Instantaneous Frequency and Cepstral Features

This work describes the techniques used for spoofed speech detection for the ASVspoof 2017 challenge. The main focus of this work is on exploiting the differences in the speech-specific nature of genuine speech signals and spoofed speech signals generated by replay attacks. This is achieved using glottal closure instants, epoch strength, and the peak to side lobe ratio of the Hilbert envelope o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017